Conformational Dynamics and Stability of U-Shaped and S-Shaped Amyloid β Assemblies
نویسندگان
چکیده
Alzheimer's disease is the most fatal neurodegenerative disorder characterized by the aggregation and deposition of Amyloid β (Aβ) oligomers in the brain of patients. Two principal variants of Aβ exist in humans: Aβ1-40 and Aβ1-42. The former is the most abundant in the plaques, while the latter is the most toxic species and forms fibrils more rapidly. Interestingly, fibrils of Aβ1-40 peptides can only assume U-shaped conformations while Aβ1-42 can also arrange as S-shaped three-stranded chains, as recently discovered. As alterations in protein conformational arrangement correlate with cell toxicity and speed of disease progression, it is important to characterize, at molecular level, the conformational dynamics of amyloid fibrils. In this work, Replica Exchange Molecular Dynamics simulations were carried out to compare the conformational dynamics of U-shaped and S-shaped Aβ17-42 small fibrils. Our computational results provide support for the stability of the recently proposed S-shaped model due to the maximized interactions involving the C-terminal residues. On the other hand, the U-shaped motif is characterized by significant distortions resulting in a more disordered assembly. Outcomes of our work suggest that the molecular architecture of the protein aggregates might play a pivotal role in formation and conformational stability of the resulting fibrils.
منابع مشابه
Structure and Dynamics of Amyloid-β Segmental Polymorphisms
It is believed that amyloid-beta (Aβ) aggregates play a role in the pathogenesis of Alzheimer's disease. Aβ molecules form β-sheet structures with multiple interaction sites. This polymorphism gives rise to differences in morphology, physico-chemical property and level of cellular toxicity. We have investigated the conformational stability of various segmental polymorphisms using molecular dyna...
متن کاملGDQEM Analysis for Free Vibration of V-shaped Atomic Force Microscope Cantilevers
V-shaped and triangular cantilevers are widely employed in atomic force microscope (AFM) imaging techniques due to their stability. For the design of vibration control systems of AFM cantilevers which utilize patched piezo actuators, obtaining an accurate system model is indispensable prior to acquiring the information related to natural modes. A general differential quadrature element method (...
متن کاملMolecular Dynamics and Molecular Docking Studies on the Interaction between Four Tetrahydroxy Derivatives of Polyphenyls and Beta Amyloid
Interactions of 3,3',4,4'-tetrahydroxybiphenyl (BPT) and three isomeric 3,3",4,4"-tetrahydroxyterphenyls (OTT, MTT, PTT) with Alzheimer’s amyloid-β peptide (Aβ) were studied by molecular dynamics simulation and molecular docking. Structural parameters such as Root-mean-square derivations (RMSD), radial distribution function (RDF), helix percentage and other physical parameters were obtained. Th...
متن کاملCross-Sectional Relative Price Variability and Inflation in Turkey: Time Varying Estimation
Abstract This study investigates the empirical validity of the variability hypothesis in Turkey for the period of February 2005-November 2015, by using cross-sectional relative price data and by focusing on the assumptions of linearity and stability. The linearity assumption between the two variables is ensured by estimating quadratic regression equation. The assumption of stability is secur...
متن کاملPolymorphism of amyloid β peptide in different environments: implications for membrane insertion and pore formation.
Amyloid-β (Aβ) peptides are thought to be involved in neurodegenerative diseases such as Alzheimer's disease and Down's syndrome. They form a large number of polymorphic structures, including heterogeneous ionic pores in membranes as well as different types of fibrillar and globular structures on surfaces and in solution. Understanding the origin of these structures and the factors that influen...
متن کامل